Potassium (Trifluoromethyl)trifluoroborate

- R. R. Holmes, Acc. Chem. Res., 5, 296 (1972).
 L. S. Bartell and K. W. Hansen, Inorg. Chem., 4, 1777 (1965).
 R. J. Gillespie, Inorg. Chem., 5, 1634 (1966).
 R. Wolf and R. Weiss, personal communication.
 H. Oberhammer and R. Schmutzler, J. Chem. Soc., Dalton Trans., 1454

- (1976).
- (18) A. Strich and A. Veillard, J. Am. Chem. Soc., 95, 5574 (1973).
 (19) K. W. Hansen and L. S. Bartell, Inorg. Chem., 4, 1775 (1965).
- (20) D. D. Swank, C. N. Caughlan, F. Ramirez, and J. F. Pilot, J. Am. Chem.
- Soc., 93, 5236 (1971).

- (21) Derivative II which has saturated rings should have more TP character than I if the arguments referred to³ here apply. The percent displacements shows the opposite, however. As discussed in ref 5 and 6, intermolecular hydrogen bonding in II is responsible for the reversal. The molecules are so positioned in the unit cell that N-H-O hydrogen bonding acts are so positioned in the unit cell that N-H=0 hydrogen bonding acts to open the N_{eq} -P- N_{eq} angle. Although hydrogen bonding is present in I, the positioning of the neighboring oxygen atoms does not induce an appreciable effect of this type. Computer minimization via molecular mechanics bears this out.⁵
- (22) J. R. Devillers and R. R. Holmes, J. Am. Chem. Soc., 99, 3332 (1977).

Contribution from the Fachbereich Naturwissenschaften II, Gesamthochschule, 5600 Wuppertal, West Germany

Crystal and Molecular Structure, Reinvestigated Vibrational Spectra, and Normal-Coordinate Analysis of Potassium (Trifluoromethyl)trifluoroborate, K[CF₃BF₃]¹

D. J. BRAUER, H. BÜRGER,* and G. PAWELKE

Received January 12, 1977

AIC70015V

The structure and vibrational spectra of $K[CF_3BF_3]$ have been determined by x-ray diffraction methods and have been reinvestigated by IR and Raman spectroscopy, respectively. The compound crystallizes in the monoclinic space group $C_{2h}^{5}-P_{21}/c$ with a = 4.843 (1) Å, b = 16.331 (4) Å, c = 6.348 (2) Å, $\beta = 101.89$ (3)°, Z = 4, $d_c = 2.378$ g cm⁻³, and $d_o = 2.5$ (1) g cm⁻³. The structure was refined anisotropically to a conventional R factor of 0.058 based on 767 counter measured, absorption corrected reflections with $|F_0| > 4\sigma(|F_0|)$. The compound forms ionic crystals which impose no crystallographic symmetry on the ions. The anion deviates somewhat from $C_{3\nu}$ symmetry, the CF₃ and BF₃ groups being rotated about 8° from the staggered conformation. The average C-F, B-F, and B-C bond distances are 1.343 (8) Å (corrected 1.360 Å), 1.391 (5) Å (corrected 1.409 Å), and 1.625 (6) Å (corrected 1.640 Å), respectively, the values being corrected for libration. The F-C-F angle is 104.9 (2)°. IR spectra of KBr and polyethylene pellets in the 50-2000-cm⁻¹ region and Raman spectra of aqueous solution, crystal powder, and single crystals were recorded on specimens with various ¹⁰B.¹¹B ratios and assigned for a staggered $C_{3\nu}$ model. A normal-coordinate analysis yielded a general harmonic valence force field which reproduces both frequencies and observed isotope shifts and which is consistent with that of related species. The following stretching force constants were obtained: $f_{CF} = 4.85$, $f_{BF} = 4.19$, and $f_{BC} = 3.63 \text{ mdyn/Å}$. Bonding in CF₃B compounds is discussed on the basis of the x-ray and the spectroscopic data.

Introduction

In preceding papers³ we have reported the vibrational spectra of CF₃ derivatives of group 4-7 elements and have demonstrated the efficiency of a normal-coordinate analysis for interpretation of spectra and description of vibrational properties. The only group 3 CF₃ derivatives which are reported to be stable at room temperature are $CF_3BF_2^4$ and the anion CF₃BF₃^{-.5,6} In addition to some other physical properties, unassigned IR spectra of CF₃BF₂⁴ and salts of the CF₃BF₃⁻ anion^{5,6} have been reported. Recently⁷ K[CF₃BF₃] has been thoroughly investigated by means of IR and Raman spectroscopy. We disagree with results of this investigation for three reasons. (i) The quality of the Raman spectra obtained from crystalline powder and from aqueous solutions is not acceptable; the spectra cover only the $\Delta \nu < 1300$ -cm⁻¹ region. With one exception no depolarization ratios have been obtained. Due to the use of a wide spectral slit, some individual lines could not be resolved and no 10/11B isotope shifts could be determined precisely. (ii) The vibration predominantly involving the δ_s CF₃ (umbrella) motion is always connected with an intense Ra line at 750 \pm 50 cm⁻¹; this feature should show only a very small ^{10/11}B shift in CF₃BF₃⁻. The strongest Ra line of $CF_3BF_3^-$ indeed occurs at ~730 cm⁻¹ and shows no shift. This line has been assigned, however, to ν_s BF₃ by Jackovitz et al.⁷ while a band at \sim 970 cm⁻¹ with a ^{10/11}B shift of 22 cm⁻¹ has been attributed to a mode that is mainly ν_s CF₃ in character. Furthermore, crowding the three a₁ stretching vibrations in the narrow region 730-1110 cm⁻¹ is certainly untenable, the lowest symmetric stretch with pulsation character being expected to lie below 400 cm⁻¹ in CF₃BF₃ and similar systems. In addition a theoretically impossible $^{10/11}$ B shift of 50 cm⁻¹ has been claimed for ν_{as} BF₃. Why the v_1 frequency of C₂F₆ (this molecule is extremely useful for

comparison) at 1420 cm⁻¹ has been disregarded, although it has never been seriously in question,⁸ is not understandable.⁹ (iii) Our second strongest Raman line is a sharp, polarized feature near 1350 cm⁻¹, which has a $^{10/11}$ B shift of 16 cm⁻¹ and coincides with an IR absorption. Surely this feature is an a₁ fundamental of CF₃BF₃⁻. The 1100-cm⁻¹ region of our spectra differs considerably, being much simpler and conclusive with respect to ^{10/11}B shifts if the KBr pellets are prepared carefully for the IR measurements. Due to different values and assignments for several fundamentals we obtain a force field which differs from that of ref 7 but which is consistent with well-defined force fields of related species.

In addition to our vibrational spectroscopic investigation. a single-crystal x-ray study of K[CF₃BF₃] is reported. The latter yielded the first structural information on group 3 CF₃ derivatives. Besides offering a firm structural basis for the interpretation of the vibrational spectrum, the distances and angles derived give useful clues to the bonding of CF₃ groups to electropositive elements.

Experimental Section

Preparation. K[CF₃BF₃] was prepared by the reaction of (CH₃)₃SnCF₃ with BF₃ and subsequent solvolysis with aqueous KF solution.⁵ BF₃ was obtained by heating natural (80.4% ¹¹B) and ¹⁰B enriched H₃BO₃ (92.4% ¹⁰B; Oak Ridge National Laboratory) with an equivalent amount of CaF2 and concentrated sulfuric acid in a Monel cylinder (Hoke) and was purified by a standard vacuum technique before use. Samples of K[CF₃BF₃] were purified by repeated recrystallization from absolute EtOH; then larger single crystals were grown from aqueous solution.

Infrared and Raman Spectra. Infrared spectra of KBr (0.5-8 mg/100 mg) and polyethylene (1.5-3 mg/100 mg) pellets were recorded in the 4000-200 and 400-50-cm⁻¹ regions with the instruments Beckman IR 12 and Polytec FIR 30, respectively. Accuracy (not corrected for vacuum) of sharp features is ± 0.5 cm⁻¹, resolution

Table I.	Positional and	Thermal Parameters	for K	[CF,	BF,	1

Atom	x	У	Z	U ₁₁ ^a	U22	U ₃₃	U12	U ₁₃	U23
K	0.1803 (2)	0.1546 (1)	0.2201 (1)	0.0391 (6)	0.0376 (7)	0.0290 (6)	0.0000 (4)	0.0062 (4)	-0.0008 (3)
F(1)	0.4957 (5)	0.2183 (2)	-0.3896 (4)	0.047 (1)	0.040 (2)	0.043 (2)	0.012 (1)	0.008 (1)	0.006 (1)
F(2)	0.9508 (5)	0.1959 (2)	-0.2151(4)	0.043 (1)	0.044 (2)	0.046 (2)	-0.013 (1)	0.000 (1)	-0.003 (1)
F(3)	0.7759 (6)	0.1365 (2)	-0.5421 (4)	0.061 (2)	0.048 (2)	0.029(1)	0.003 (1)	0.020(1)	0.001 (1)
F(4)	0.5845 (7)	0.0998 (2)	-0.0232(4)	0.102 (2)	0.059 (2)	0.034 (2)	-0.009(2)	0.035 (2)	0.001 (1)
F(5)	0.3683 (6)	0.0511(2)	-0.3230(5)	0.047 (2)	0.059 (2)	0.076 (2)	-0.023 (1)	0.006 (1)	-0.005 (2)
F(6)	0.7971 (6)	0.0196 (2)	-0.2034 (5)	0.066 (2)	0.040 (2)	0.063 (2)	0.016 (1)	0.017 (2)	0.017 (1)
С	0.6148 (9)	0.0825 (3)	-0.2263(6)	0.040 (2)	0.033 (2)	0.025 (2)	0.001 (2)	0.006 (2)	-0.000(2)
В	0.7133 (9)	0.1613 (3)	-0.3490 (7)	0.035 (2)	0.031 (3)	0.020 (2)	0.000 (2)	0.006 (2)	-0.002 (2)

^a The form of thermal ellipsoids is $\exp\left[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2hka^*b^*U_{12} + 2hla^*c^*U_{13} + 2klb^*c^*U_{23})\right]$.

 $(>650 \text{ cm}^{-1}) \le 0.6 \text{ cm}^{-1}$, otherwise $0.6-2 \text{ cm}^{-1}$. Raman spectra of crystalline powder and solutions were obtained employing 1-mm glass capillaries, while single crystals (plates, ca. $5 \times 5 \times 0.5 \text{ mm}$) were mounted on a goniometer. A Cary 82 spectrometer was used with a Kr⁺ laser, 647.1 nm excitation/200 mW, at the sample. Spectral slit widths were 3 cm⁻¹ for solutions, otherwise $\le 2 \text{ cm}^{-1}$; qualitative depolarization ratios are estimated.

X-Ray Analysis. Data Collection and Reduction. Crystals used in the x-ray investigation were cleaved from plate-like material (only the (010) face is well developed) grown from aqueous solution, examined microscopically, and attached with an epoxy resin to a glass fiber which had been mounted on a goniometer head. Crystals were examined on an automated Siemens quarter-circle diffractometer using ZrO_2 filtered Mo K α radiation and a 1° incident beam collimator. Crystal to source and crystal to detector distances were 17 and 18 cm, respectively. The pulse height analyzer was set to receive all of the Mo K α radiation. More than 20 specimens were found to be twinned or to give asymmetrical peak profiles. Symmetrical profiles with full widths at half-height of ~0.2° (ω scans of several strong, low-angle reflections) were given by the data crystal.

A manual search of reciprocal space ($\theta < 20^{\circ}$) revealed that the crystals are monoclinic. The systematic absences h0l, l = 2n + 1, and 0k0, k = 2n + 1, are unique for the space group $C_{2h}^{5} \cdot P_{21}/c$. Unit cell constants, derived by a least-squares method¹² from 35 Bragg angles ($\theta > 19^{\circ}$, vertically oriented thin slit receiving collimator, λ (Mo K α_1) 0.709 26 Å, λ (Mo K α_2) 0.713 54 Å, t 23 °C), are a = 4.843 (1) Å, ¹³ b = 16.331 (4) Å, c = 6.348 (2) Å, and $\beta = 101.89$ (3)°. The calculated density of 2.378 g cm⁻³ for Z = 4 compares reasonably well with that observed pycnometrically in CH₂Cl₂, 2.5 (1) g cm⁻³.

The data crystal of dimensions $0.087 \times 0.551 \times 0.58$ mm was mounted with c parallel to the ϕ axis. A receiving collimator having horizontal and vertical inner dimensions of 1 and 3 mm, respectively, was used. A total of 1498 reflections (hkl, $\bar{h}kl$, $2^{\circ} \leq \theta \leq 25^{\circ}$) were collected by the θ -2 θ , five-value¹⁴ scan technique. The Friedel equivalent of those reflections with inaccessible setting angles was measured. Symmetrical scan widths varied from 1.22 to 2.00° (2 θ) depending on the Bragg angle. Coincident losses were prevented and data collection time was minimized by the automatic selection of one of six Ni-foil attenuators and one of three scanning speeds, 20, 10, and 5° (2 θ)/min, respectively. Every 40 reflections the 0,12,0 were monitored with and without a shutter inserted in the lower half of the counter window. No intensity variation greater than $\pm 3\sigma$ was noted for this standard reflection.

Intensity data were corrected for Lorentz and polarization effects (Lp), monitor fluctuation, and absorption, μ (Mo K α) = 11.1 cm⁻¹. The transmission factor T ranged from 0.506 to 0.907. The standard deviation in $|F_o|$ was estimated as $\sigma(|F_o|) = [\sigma^2(I) + (0.03I)^2]^{1/2}/(2|F_o|LpT)$, where $\sigma(I)$ is the standard deviation in the intensity I as estimated by counting statistics.¹⁴ Averaging of equivalent data yielded 864 reflections, of which 767 had $|F_o|$'s greater than $4\sigma(|F_o|)$.

Solution and Refinement. The structure was solved by direct methods. The sign expansion began with three origin-determining reflections and 12 symbols. This starting set was used to phase the 183 reflections with |E| > 1.2. The positions of the nine atoms were taken from the most probable E map. The labeling of the atoms was straightforward except for the boron and carbon atoms. The naming of the latter two atoms followed from E-map densities $[\rho(C) > \rho(B)]$ and from the average values of the shorter K-F contacts, $\langle K-F(C) \rangle > \langle K-F(B) \rangle$.

The structure was refined by least squares. The function minimized was $\sum w\Delta^2$, where $\Delta = ||F_o| - |F_c||$ and the weights $w = [\sigma^2(|F_o|) + p|F_o|^2]^{-1}$ if $|F_o| \ge 4\sigma(|F_o|)$ and w = 0 if $|F_o| < 4\sigma(|F_o|)$. Exponential

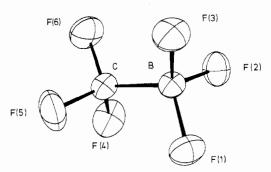


Figure 1. Perspective drawing of the anion of K[CF₃BF₃].

forms of relativistic, neutral atom scattering factors were used.^{15a} Real and imaginary anomalous dispersion corrections^{15b} were applied for each atom. Three cycles of isotropic least-squares refinement yielded $R = \sum \Delta / \sum |F_0|$ and $R_w = [\sum w \Delta^2 / \sum w |F_0|^2]^{1/2}$ of 0.123 and 0.126, respectively. Then the absorption correction was applied. Four cycles of refinement with anisotropic thermal parameters for all atoms converged with R = 0.059 and $R_w = 0.078$. In order to test for disorder of the C and B atoms, a double atom, constrained refinement was made. No indication of disorder was found.^{16a} Examination of a function of $(w\Delta^2)^{1/2}$ for the eight parity groups, the Miller indices, $|F_0|$, and $(\sin \theta)/\lambda$ indicated that the weights were too high for strong, low-angle reflections. A check of a $|F_0|$, $|F_c|$ list did not reveal an extinction effect. So the refinement was repeated with p set to 0.0016. Then the plots of the $(w\Delta^2)^{1/2}$ function were deemed satisfactory. The final values of R and R_w are 0.058 and 0.079, respectively, these summations ignoring the contribution of reflections with $|F_0| < 4\sigma(|F_0|)$. The residuals for all 864 reflections are 0.063 and 0.081, respectively. During the last cycle no parameter shifted more than 8% of its error. The largest peak, 0.71 e Å⁻³, on the final difference Fourier is near the K atom. Other features ($\leq 0.46 \text{ e} \text{ Å}^{-3}$) are near K and F atoms. This residual density may be compared with the height of the B atom in this structure, 5.8 e $Å^{-3}$.¹⁷

Positional and thermal parameters are listed in Table I, the numbering scheme being defined in Figure 1. For calculation of the errors in the anion geometry, Table II, correlation between refined parameters was taken into account. The standard deviation of interionic distances and angles, Table III, was derived from the σ 's given in Table I. Root-mean-square displacements of the atoms along their principal axes are presented in Table IV. We have attempted to fit the thermal motion of the anion atoms with a rigid body motion model.¹⁸ The fit of 20 rigid body motion parameters to 48 temperature factors U_{ij} may be judged by comparing $\{\sum [U_{ij}(\text{obsd}) - U_{ij} - (\text{calcd})]^2\}^{1/2}/28 = 0.0038 \text{ Å to } [\sum \sigma^2(U_{ij})/48]^{1/2} = 0.0015 \text{ Å}; \text{ hence}$ while the fit seems to be fairly good, some significant nonrigid body motion may be present. The center of reaction¹⁹ is between the C and B atoms, about 0.4 Å from the latter. The librational corrections to the C-F, B-F, and C-B bond lengths are large with respect to the errors in these values and the corrected values are also listed in Table II. No librational correction for the bond angles was felt necessary.

Description of the Structure

Interionic Interactions. As expected K[CF₃BF₃] has been found to form an ionic solid. No crystallographic symmetry is imposed on either the anion or the cation. The crystal structure is apparently dominated by K-F interactions because the shortest interionic F-F contact—F(5)-F(6) (x - 1, y, z), 3.060 (4) Å —is much larger than twice the van der Waals Table II. Bond Distances (A) and Angles (deg) in the Anion of K[CF₃BF₃]

	3 - 3 3			
C-F(4)	1.357 (5)	1.374 ^a	F(4)-C-B	113.0 (3)
C-F(5)	1.328 (5)	1.346 ^a	F(5)-C-B	114.1 (3)
C-F(6)	1.343 (5)	1.359ª	F(6)-C-B	114.0 (3)
Av	1.343 (8) ^b	1.360 (8)		Av 113.7 (3)
B- F(1)	1.390 (5)	1.407 ^a	F(1)-B-F(2)	109.8 (3)
B- F(2)	1.401 (5)	1.420°	F(1)-B-F(3)	109.1 (3)
B-F(3)	1.383 (5)	1.400 ^a	F(2)-B-F(3)	110.7 (3)
Av	1.391 (5)	1.409 (6)		Av 109.9 (5)
B-C	1.625 (6)	1.640ª	F(1)-B-C	109.5 (3)
		26	F(2)-B-C	108.3 (3)
ω F(3)-B-C			F(3)-B-C	109.4 (3)
ω F(2)-B-C ω F(3)-B-C	• •			Av 109.1 (4)
$\omega F(1)-B-C$	C-F(4) -68	.4		
$\omega F(2)-B-C$	C-F(4) 51	.2	F(4)-C-F(5)	104.9 (3)
$\omega F(1)$ -B-C			F(4)-C-F(6)	104.7 (3)
			F(5)-C-F(6)	105.2 (3)
				Av 104.9 (2)

^a These distances are corrected for librational motion. ^b These are average distances. The standard deviations are calculated from the formula $[\Sigma_i(l_i - \overline{l})^2/n(n-1)]^{1/2}$. ^c These are torsional angles, a negative sign being given to those cases for which a counterclockwise rotation is required to bring the first vector into the third when viewing down the second.

Table III. Comparison of K-F,^a B-F, and C-F Distances (Å) and Selected F-K-F Angles (deg)

K-F(1) ^{I b} K-F(1) ^{II}	2.827 (3) ^c 2.750 (3) ^d	B-F(1)	1.390 (5) ^e
K-F(2) ^{III} K-F(2) ^{IV}	2.838 (3) ^c 2.748 (3) ^d	B-F(2)	1.401 (5)
K-F(3) ^V K-F(3) ^I	2.724 (3) ^d 2.982 (3)	B-F(3)	1.383 (5)
K-F(4) K-F(4) ^{III}	2.875 (3) ^d 3.111 (3)	C-F(4)	1.357 (5)
K-F(5) ^I	3.319 (3)	C-F(5)	1.328 (5)
$K-F(6)^{VI}$	2.850 (3) ^d	C-F(6)	1.343 (5)
$\begin{array}{l} F(1)^{I}\text{-}K\text{-}F(1)^{II}\\ F(1)^{I}\text{-}K\text{-}F(2)^{III}\\ F(1)^{I}\text{-}K\text{-}F(2)^{IV}\\ F(1)^{I}\text{-}K\text{-}F(3)^{V}\\ F(1)^{I}\text{-}K\text{-}F(4)^{VI}\\ F(1)^{I}\text{-}K\text{-}F(6)^{VI}\\ F(1)^{II}\text{-}K\text{-}F(2)^{III}\\ F(1)^{II}\text{-}K\text{-}F(2)^{III}\\ F(1)^{II}\text{-}K\text{-}F(3)^{V}\\ F(1)^{II}\text{-}K\text{-}F(4)\\ F(1)^{II}\text{-}K\text{-}F(6)^{VI}\\ F(1)^{II}\text{-}K\text{-}F(6)^{VI}\\ \end{array}$	68.3 (1) 136.3 (1) 67.9 (1)	F(2) ^{III} -K-F(2 F(2) ^{III} -K-F(3 F(2) ^{III} -K-F(4 F(2) ^{III} -K-F(6 F(2) ^{IV} -K-F(6 F(2) ^{IV} -K-F(6 F(3) ^V -K-F(4) F(3) ^V -K-F(6) ^V)V 112.5 (1))VI 74.0 (1))VI 102.2 (1))V 69.8 (1)) 134.3 (1))VI 155.8 (2) 155.6 (2) VI 87.1 (1)

^a All K-F distances shorter than 3.6 Å are included. ^b Coordinates r of primed atoms are related to those in the asymmetric unit as follows: $r^{I} = x, y, 1 + z; r^{II} = x, 0.5 - y, 0.5 + z; r^{III} = x$ $-1, y, z; r^{IV} = x - 1, 0.5 - y, 0.5 + z; r^{V} = x - 1, y, 1 + z; r^{VI} =$ 1 - x, -y, -z. ^c Atom occupies an axial position of the pentagon-al bipyramid of the K atom. ^d Atom occupies an equatorial position of the pentagonal bipyramid of the K atom. e These bond lengths are not corrected for librational shortening.

Table IV. Root-Mean-Square Displacements (A) along Principal Axes in KICF_BF_1

Atom	Minor	Medium	Major
K	0.17	0.19	0.20
F(1)	0.17	0.21	0.24
F(2)	0.17	0.22	0.24
F(3)	0.15	0.22	0.25
F(4)	0.15	0.24	0.32
F(5)	0.17	0.27	0.29
F(6)	0.17	0.24	0.28
C	0.16	0.18	0.20
В	0.14	0.18	0.19

radius of fluorine, 2.70 Å.²⁰ Potassium-fluorine distances less than 3.6 Å are listed in Table III. If we disregard the three longest K-F contacts, the cation is nine-coordinate. The coordination geometry may be described as a distorted square antiprism with the ninth F atom above a fourfold face. Furthermore, the formation of a short K-F contact is often accompanied by a longer, second interaction between the cation and another F atom of the same anion (Table III). If we ignore these second interactions, then the cation possesses distorted pentagonal-bipyramidal seven-coordination. The F atoms involved are indicated in Table III. The seven K-F distances range from 2.724 (3) to 2.875 (3) Å. These contacts may be compared with average K-F distances of six-coordinate and eight-coordinate potassium ions, 2.673 and 2.84 Å, respectively.²¹ Interestingly, only two of these seven contacts involve F atoms of the trifluoromethyl group, and these two are the longest of the seven (Table III). The only F atom not to form a short K-F contact, F(5), also bonds to the carbon atom.

Anion Geometry. While the geometry of free $CF_3BF_3^-$ is expected to possess rigorous C_{3v} symmetry, the symmetry of the anion deviates clearly from C_{3v} and slightly but significantly from C_3 in the solid state. The lowering of the symmetry from C_{3v} to C_3 is seen in the ω (F-C-B-F) torsion angles (Table II), the CF₃ and BF₃ groups being rotated about 8° from the staggered conformation. The lowering of anion symmetry from C_3 to C_1 is revealed by χ^2 tests; i.e., we can reject the hypotheses that all of the C-F bond distances and all of the F-B-F valence angles are equal at the 99% confidence level. From the list of K-F, C-F, and B-F distances in Table III, one might propose that shorter K-F distances lead to longer C-F and B-F bond lengths. However, we prefer to be cautious because C_3 anion symmetry would no longer be seriously questioned even in the solid state if our standard deviations were underestimated by a factor of 1.4.

The C-F bond lengths average 1.343 (8) Å (corrected 1.360 Å), and the F-C-F valence angles average 104.9 (2)°. The F-C-F angles are the smallest known to date for a trifluoromethyl group bonded to a main group element.²² The geometry of the CF₃ group observed in this investigation is similar to those reported for CF₃ compounds of the transition elements; i.e., in $\{\eta^4 - (CH_3C)_4(CF_3)Pt[P(C_6H_5)(CH_3)_2]_2\}PF_6$, $\langle C-F \rangle$ is 1.36 Å and $\langle F-C-F \rangle$ is 104°;²³ in $\eta^5 - C_5H_5(CF_3) - Ni[P(C_6H_5)_3]_2$, $\langle C-F \rangle$ is 1.35 Å and $\langle F-C-F \rangle$ is 105°.²⁴ Using the plot of the F-C-F valence angle vs. the C-F bond length that was published by Yokozeki and Bauer²² for 36 trifluoromethyl compounds, we calculate a C-F bond length of 1.36 Å for a F-C-F valence angle of 104.9°. The calculated length agrees particularly well with our corrected C-F bond length. The B-F bond distances and F-B-F bond angles average 1.391 (5) Å (corrected 1.409 Å) and 109.9 (5)°, respectively. Selected structural parameters for three- and four-coordinate boron compounds, containing B-F bonds, are given in Table V. Note the similarity of B-F distances in KBF_4 ,²⁵ NH_4BF_4 ,²⁶ and $K[BF_3CF_3]$. The B-C distance in K[CF₃BF₃] is 1.625 (6) Å (corrected 1.640 Å). The B-C bond lengths in a number of three- and four-coordinate boron compounds are listed in Table V. Of the four-coordinate boron compounds only the B-C bond in BH₃·CO, 1.54 Å,²⁷ deviates markedly from the value 1.64 Å. The shortness of this bond may be due in part to the sp hybridization of the carbon atom.²⁸ The correspondence of the B-C distances in $K[CF_3BF_3]$ and $Li[B(CH_3)_4]$ may be due to chance. The B-C bonds in the latter compound vary from 1.51 to 1.74 Å due to different types of B-CH₃-Li bridging geometries.²⁹

Vibrational Spectra and Assignment. Assuming C_{3v} symmetry the isolated CF₃BF₃⁻ anion exhibits the normal vibrations listed in Table VI. Of these the torsion ν_{12} is inactive

Table V.	Geometry	of Selected	Boron	Compounds
----------	----------	-------------	-------	-----------

	Th	ree-Coordinate Com	pounds		
Compd	В- С, ^{<i>a</i>} Å	В	-F, Å	$\angle C_{\beta} - C_{\alpha} - C_{\beta}$, deg	Ref
$(C_2H_3)_3B$	$r_{a} 1.558 (3)^{b}$)			48
$[C_{6}H_{2}(CH_{3})_{3}]_{3}B$	1.575 (4)			117.3 (2)	44
$(C_6H_5)_3B$	1.577 (6)			116.8 (3)	43
(CH ₃) ₃ B	$r_{g} 1.578 (1)^{b} r_{a} 1.55 (2)^{b}$)	,		45
$(CH_3)_2BF$	$r_{a} 1.55 (2)^{o}$	r _a 1.	29 (2) ^b		49
$(C_2H)BF_2$	$r_{\rm s} 1.513 (5)^{b}$	$r_{\rm s}$ 1.	323 (5) ^b		28
$(C_2H_3)BF_2$	$r_{0} 1.532 (3) r_{a} 1.60 (3)^{b}$	r _o 1.	331 (2) 30 (2) ^b		47
CH ₃ BF ₂	$r_{a} 1.60 (3)^{0}$	r_{a} 1.	$30(2)^{0}$		49
BF ₃		1.	311 (1) ^b		С
	Fc	our-Coordinate Com	pounds		
Compd	B-C, Å	B-F, A	B−D, ^d Å	∠F-B-F, deg	Ref
BH ₃ ·CO	$r_0 1.54 (1)^b$		$r_0 1.54 (1)^b$		27
BF ₃ ·NC ₂ H ₃	•	1.347 (6)	1.630 (4)	113.0 (5)	е
		$1.380 \ (4)^{f}$			
BF₃·PH₃		r _s 1.372 (2)	^r s 1.921 (7)	112.1 (4)	g
K[CF,BF,]	1.625 (6)	1.391 (5)		109.9 (5)	g i
	1.640 ^h	1.409 (6) ^h			
KBF₄		1.386 (4)		109.4 (4)	
NH ₄ BF ₄		1.382 (6)		109.4 (5)	
		1.406 (4) ^h			
Et ₂ Bpz ₂	1.620 (5)				
$Li[(CH_3)_4B]$	1.645			1110 (1)	
$(C_6H_5)_4B^-$	$1.642 (2)^k$			114.3 (4) ^k	

^a The designators r_a , r_g , r_o , and r_s define different measures of bond lengths.²² ^b These uncertainties are error limits. ^c K. Kuchitsu and S. Konaka, J. Chem. Phys., 45, 4342 (1966). ^d Donor atom of the Lewis base. ^e B. Swanson, D. F. Shriver, and J. A. Ibers, Inorg. Chem., 8, 2182 (1969). ^f Bond length corrected for riding motion. ^g J. D. Odom, V. F. Kalasinsky, and J. R. Durig, Inorg. Chem., 14, 2837 (1975). ^h Bond length corrected for librational motion. ⁱ This work. ^j The average value of the B-C bond length in the diethylbis(1-pyrazolyl)borato (Et₂Bpz₂⁻) ligand was obtained from the following publications: B. W. Davis and N. C. Payne, J. Organomet. Chem., 102, 245 (1975); F. A. Cotton, T. La Cour, and A. G. Stanislowski, J. Am. Chem. Soc., 96, 754 (1974); F. A. Cotton, B. A. Frenz, and A. G. Stanislowski, Inorg. Chim. Acta, 7, 503 (1973). ^k The bond length is the average of mean values found for (C₆H₅)₄B⁻ by R. J. Sime, R. P. Dodge, A. Balkin, and D. H. Templeton, Inorg. Chem., 10, 537 (1971); K. Hoffmann and E. Weiss, J. Organomet. Chem., 67, 221 (1974); D. M. Duggen and D. N. Hendrickson, Inorg. Chem., 13, 1911 (1974); K. J. Kruger, A. L. du Preez, and R. J. Haines, J. Chem. Soc., Dalton Trans., 1302 (1974); M. Di Vaira and A. B. Orlandini, *ibid.*, 1704 (1972). The bond angle is obtained similarly from the last three publications.

Table VI. Number, n, and Distribution and Notation, k, of Fundamentals for the Free CF_3BF_3 Ton, for the Ion in the Crystal, and for the Unit Cell

				Ion in the cryst	Unit	cell, $Z = 4$,	space group	р С _{2h} ⁵
Vib mode	$a_1(IR, R p)^b$ $n (k)^a$	$n \frac{a_2}{(k)^a}$	$e(IR, R dp) n (k)^a$	symmetry $C_1 n=$	$A_{g}(R)$ n=	$B_{g}(R)$ n=	$A_u(IR)$ n=	B _u (IR) n=
$\nu(BC)$	1 (1)			1	1	1	1	1
$\nu(CF)$	1 (2)		1 (6)	. 3	3	3	3	3
$\nu(BF)$	1 (3)		1(7)	3	3	3	3	3
$\delta(CF_3)$	1 (4)		1 (8)	3	3 -	3	3	3
$\delta(BF_3)$	1 (5)		1 (9)	3	3	3	3	3
$\rho(CF_3)$			1 (10)	2	2	2	2	2
$\rho(\mathrm{BF}_3)$			1 (11)	2	2	2	2	2
Torsion		1 (12)		1	1	1	1	1
Librational modes					3	3	3	3
Translational modes					6	6	5	4

^a The notation k is not consistent with the order of frequencies v_i in Tables VII and IX. ^b R = Raman.

both in the infrared and Raman spectrum. The site symmetry of the anion in the crystal is only C_1 . According to Table VI the inner vibrations of the four anions in the unit cell of space group C_{2h}^{5} - P_{2_1}/c give rise to 32 Raman lines and 32 infrared bands. Table VII summarizes and Figures 2–4 reproduce the IR spectra of KBr disks and the Raman spectra obtained on aqueous solutions and single crystals with different orientation. In the crystal only the e modes ν_6 , ν_8 , ν_9 , ν_{10} and, to a lesser extent, ν_7 are split, the relative Raman intensity of the components displaying marked orientation dependence. Hence spectra of samples with a natural abundance of B isotopes and with ¹⁰B enriched were needed to determine ^{10/11}B shifts unequivocally. Precise ^{10/11}B shifts, which are listed in Table VIII, were determined on samples with various ^{10/11}B ratios; e.g., see Figure 5. **Class a**₁ **Vibrations.** In the Raman spectrum three strong, sharp, and (in solution) polarized lines at ~1350, ~730, and ~310 cm⁻¹ predominate; these correspond clearly to the a_{1g} vibrations of C₂F₆ (Table IX). Jackovitz et al.⁷ have already pointed out that the intensities in the spectrum of CF₃BF₃⁻ are those of a slightly perturbed D_{3d} model. This implies that the two other a₁ vibrations should give rise to strong infrared bands rather than to strong Raman lines. This is in fact true for the IR/Raman pair at ~640 cm⁻¹ and the vibration at 1094/1066 cm⁻¹, which, though partly hidden by ν_6 in the Raman spectrum, can be safely assigned to ν_2 (vide infra). The ^{10/11}B shift of all a₁ vibrations can either be determined precisely or is smaller than the instrumental resolution. Thus, the observed shifts of the 731 and 312 cm⁻¹ features (less than 0.5 and 1 cm⁻¹, respectively) are in agreement with those

Table VII. Vibrational Spectra of $K[CF_3BF_3]$ (cm⁻¹)

	an single rystal	Raman solution	Assign
80 w			
120 s	100	185 vw	
189 m 308)	190 vw	105 VW	$\nu_{i1} e$
315 W	314 m	312 s, p	$\nu_s a_1$
5107	331)		
331 w	334 > m	329 m, dp	$\nu_{10} e$
	342)		
465	465	466 vw	ν _e e
475 ^m	475 VW	400 ***	290
560 vw	555) 559}s	556 m, dp	ν _s e
	559) 625 vw	625 vw	
637.4 ¹¹ B	639 ¹¹ B	639 ¹¹ B	$2\nu_{5} A_{i}$
640.5 ¹⁰ B}s	643 ¹⁰ B}m	643 ¹⁰ B} ^w , p	$\nu_4 a_1$
732.0 w	732 vs	731 vs, p	$\nu_3 a_1$
963 ¹¹ Bl	962 ¹¹ B)	961 ¹¹ B	ν, e
986 ¹ °B) ^{vs}	984 ¹⁰ B	985 ¹⁰ B} ^{VW}	ν_{γ} c
	1054) 11B	1063 ¹¹ B	
	1080)		ν ₆ e
	1070] ¹⁰ B	1076 ¹ 8	
1066 ¹¹ B	1096 (· · · ·) 1023 ¹¹ B		
1094 ¹ °B	1025 B 1054 ¹⁰ B		$\nu_2 a_1$
1191)	1034 B		
1203 W			$\nu_3 + \nu_9 E$
1342 ¹¹ B)	1343 ¹¹ B	1339 ¹¹ Bl	
1358 ¹⁰B∫ ^w	1359 ¹ºB ^{¢m}	1356 ¹⁰ B) ^{m, p}	$\nu_1 a_1$
1518 ¹¹ B)			$\nu_7 + \nu_8 A_1 +$
1541 ¹⁰B∫ ^{∨w}			$A_{2} + E$

calculated by the normal-coordinate analysis.

Class e Vibrations. On the basis of the similarity with the C_2F_6 spectrum, three e vibrations with high Raman intensity (ν_6, ν_8, ν_{10}) and three with high IR intensity (ν_7, ν_9, ν_{11}) are to be expected. Table IX shows that, with respect to intensity and frequency, the correspondence to the e_8 and e_u vibrations

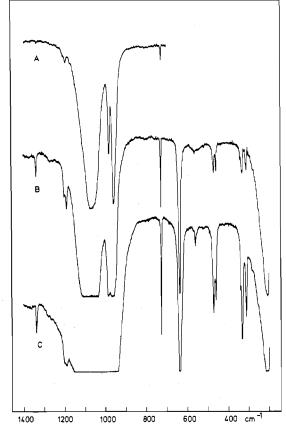


Figure 2. Infrared spectra of natural K[CF₃BF₃]: (A) KBr pellet, 0.5 mg/100 mg; (B) KBr pellet, 3 mg/100 mg; (C) KBr pellet, 8 mg/100 mg.

of C_2F_6 is excellent. ν_6 , ν_8 , and ν_{10} fall into the regions expected for ν_{as} , δ_{as} , and ρ CF₃, while ν_7 , ν_9 and ν_{11} , in accordance with

Table VIII. Observed and Calculated Frequencies, Experimental and Calculated ${}^{10}B/{}^{11}B$ Shifts (all in cm⁻¹), and Potential Energy Distribution $V(k)^{a}$

$\nu_{obsd(^{11}B)}^{b}$	$\nu_{calcd}(^{11}B)$	$(\Delta \nu^{10/11} B)_{exptl}$	$(\Delta \nu^{10/11} B)_{calcd}$	V(k) (¹¹ B)
a, 1339	1338.4	16	16.3	50(1), 39(2), 31(4)
. 731	730.6	<0.5	0.0	50(2), 24(4)
1066	1063.1	28	28.7	43(3), 30(5), 20(2), 15(4)
639	639.8	3.1	3.1	44(3), 27(5), 12(4)
312	310.8	<1	0.1	38(5), 34(1), 15(4)
e 1065	1066.9	15-16	15.9	63(6), 21(7), 21(10), 20(8), 10(11)
556	556.6	<1	0.0	49(8), 18(6)
329	328.8	<1	0.0	46(10), 39(9), 14(8), 11(11)
961	965.0	23	22.9	77(7), 30(6), 16(9)
466	467.2	<2	1.4	47(9), 18(8), 10(7)
185	189.4	<1	0.3	83(11), 33(10)

^a $V(k) = F_{dia}L_{ik}^2 \cdot 100\Sigma_{ij}F_{ij}L_{ik}L_{jk}$ for V(k) > 10. ^b Solution data whenever available.

Table IX. Comparison of Selection Rules and Vibrational Intensities for C_2F_6 (D_{3d}) and $CF_3BF_3^-(C_{3v})$

	$-C_{2}F_{6}^{s,30,a}$				CF ₃ ¹⁰ BF ₃ ⁻		
		Raman	IR		Raman	IR	
$a_{1g}(R p)^c$	ν_1	1420 m, p		$a_1(R p, IR) \nu_1$	1356 m, p	1358 w	
- 6	ν_2	809 vs, p		Va	731 vs, p	732 w	
	ν_3	349 s, p		ν_{5}	312 s, p	315 w	
a _{2u} (IR)	ν_4		1116.9 vs	ν_2	d	1094 vs	
	ν_{s}		714.0 vs	ν_{a}	643 w, p	640.5 s	
eg(Rdp)	ν_6	1237 mb		$e(R dp, IR) v_6$	1075 w	d	
8	ν_{7}	620 mb		ν ₈	556 m	560 vw	
	ν_8	380 mb		ν_{10}	329 m	331 w	
e _u (IR)	ν°		1250.5 vs	ν_7	985 vw	986 vs	
u , ,	ν_{10}		522.5 s	ν_9	466 vw	465/475 m	
	ν_{11}^{10}		219 s	ν_{11}	185 vw	189 m	
a ₁₁ (inactiv	e) v_{12}^{11}		67.5 ?	a_2 (inactive) ν_{12}		Ь	

^a J. R. Nielsen and C. M. Richards, J. Chem. Phys., 16, 67 (1948). ^b Not observed. ^c R = Raman. ^d See text.

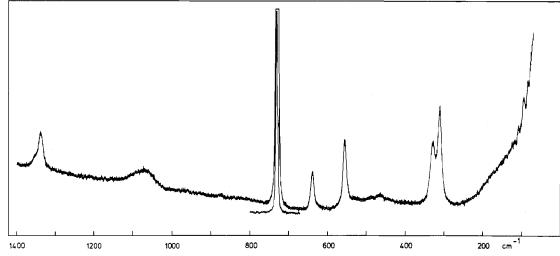


Figure 3. Raman spectrum of natural K[CF₃BF₃], saturated aqueous solution.

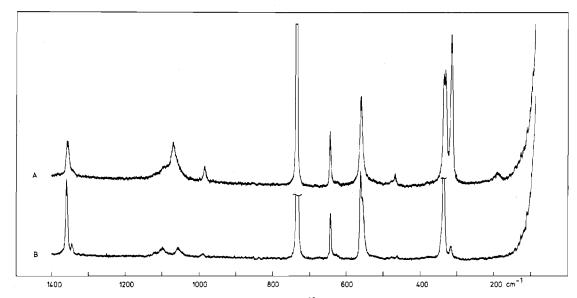


Figure 4. Single-crystal Raman spectra A and B of K[CF₃BF₃], 92.4% ¹⁰B, recorded at different orientations of the crystal.

the normal-coordinate analysis and their $^{10/11}$ B shifts, are mainly associated with ν_{as} , δ_{as} , and ρ BF₃.

Assignment of the e vibrations ν_7 to ν_{11} is straightforward. Contrary to a previous observation⁷ ν_7 is sharp and exhibits no structure except for the isotopic splitting in the IR spectrum (Figure 5). However, the quality of the IR spectra strongly depends on the conditions under which the pellets were prepared. We admit that the conditions under which optimal disks were obtained could not always be reproduced. This concerns in particular the ν_2 and ν_6 region close to 1100 cm⁻¹ (vide infra). The assignment of ν_{11} is supported by (i) the analogy with C_2F_6 , (ii) the fact that no Raman line in observed below 190 cm⁻¹, and (iii) the reasonable value of 0.69 mdyn/Å for the CBF bending force constant resulting from the normal-coordinate analysis.

The IR bands at 80 and 120 cm⁻¹ are presumed to be lattice modes. No evidence could be obtained for the frequency of the torsion ν_{12} ; this is estimated to be ≤ 60 cm⁻¹ in analogy to C_2F_6 .³⁰

Vibrations in the 1100-cm⁻¹ **Region.** This region is expected to contain ν_2 and ν_6 , the vibrational character of which is related respectively to a_{2u} and e_g vibrations of C_2F_6 . Hence ν_2 and ν_6 should be mainly IR and Raman active, respectively. Figure 5 shows the 900–1200-cm⁻¹ region with ν_2 , ν_6 , and ν_7 . The IR spectra demonstrate the change due to increasing

Table X. Vibrations in the $\nu_2/\nu_6/\nu_7$ Region (cm⁻¹)

		1	0 _B	11 _B					
	Raman (crystal)				IR (KBr pellet)	Rama (crysta		IR (KE pellet)	
ν ₆	10 9 6 m	$^{10}x_1$		10 8 0 m	$^{11}x_1$				
	1070 m	$^{10}x_{2}$		1054 m	$^{11}x_{2}$				
ν_2			1094 vvs ${}^{10}y_1$		-	1066 vvs	11 y.		
-	1054 vw	¹⁰ V2	- 1	1025 vw	¹¹ V ₂		~ 1		
ν_{7}	990 vw	¹⁰ Z.		968 vw					
'	984 vw	$10_{Z_{2}}^{1}$	986 vs $10z_2$	962 vw		963 vs	$11_{Z_{2}}$		

¹⁰B:¹¹B ratio, the Raman part reproducing the tracings obtained from powder and variously oriented single-crystal specimens with the highest and lowest ¹⁰B:¹¹B ratios only. The observed frequencies are listed in Table X. Presuming that the different components of the same vibration exhibit equal ^{10/11}B shifts, we interpret the spectra as follows. The IR spectra show two absorptions between 900 and 1200 cm⁻¹, only isotopic splitting being noted for samples containing boron isotopes in natural abundance. The experimental shifts for the components y_1 and z_1 are 28 and 23 cm⁻¹, respectively. v_7 in the powder Raman spectrum coincides with the IR frequency. Raman spectra obtained on solutions prove that the scattering near 1050 cm⁻¹ is depolarized. So the main components contributing to the powder and single-crystal

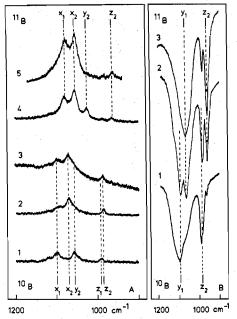


Figure 5. Raman and infrared spectra of $K[CF_3BF_3]$ in the 900–1200-cm⁻¹ region: (A, Raman spectra) 1 and 2, single crystal, 92.4% ¹⁰B, different orientation; 3, crystal powder, 92.4% ¹⁰B; 4 and 5, single crystal, natural abundance, different orientation; (B, infrared spectra, KBr pellets, 0.5 mg/100 mg) 1, 92.4% ¹⁰B; 2, ¹⁰B:¹¹B = 1:1; 3, natural boron abundance.

spectra are likely to belong to ν_6 (e) rather than to ν_2 (a₁). This is consistent with the conclusions drawn from the analogy to C_2F_6 .

The two bands $({}^{10}x_1, {}^{10}x_2)$ in the Raman powder spectrum of the ¹⁰B sample are split by 26 cm⁻¹; in the ¹¹B sample ¹¹ x_1 and ${}^{11}x_2$ appear with the same splitting, isotopic shifts being 16 cm⁻¹. The latter sample, however, gives a weak, additional line ${}^{11}y_2$ at 1025 cm⁻¹. If we suppose that the component ${}^{11}y_2$ exhibits the same ${}^{10/11}B$ shifts as y_1 does, then ${}^{10}y_2$ is expected to lie sufficiently close to ${}^{10}x_2$ to be hidden due to the low intensity of the former. The intensity ratio of the components x_1 and x_2 in the Raman spectrum depends strongly on the orientation of the crystal. At one certain orientation the x_2 component of a ¹⁰B sample was completely absent (Figure 5). Now ${}^{10}y_2$ can be clearly observed at 1054 cm⁻¹; the experimental shift ${}^{10}y_2{}^{-11}y_2$ of 29 cm⁻¹ is consistent with the IR shift ${}^{10}y_1{}^{-11}y_1$ of 28 cm⁻¹. Furthermore we conclude that the components x_2 and y_2 are of different symmetry. Even z is likely to consist of two components, z_1 and z_2 , which are, however, very close. The broadening of $10/11y_1$ evident from the IR spectrum in Figure 5 is presumed to emerge from the fact that x_1 and x_2 have a significant albeit smaller intensity than y_1 , which is situated between x_1 and x_2 for both isotopes. Similarly the sensitivity of the IR spectra in the 1100-cm⁻¹ region to the conditions under which the pellets are prepared may be due to such interference with components of ν_6 .

Solution IR spectra in H₂O employing an IRTRAN 2 cell reveal an even more complex behavior. While the ¹¹B sample exhibits one quite sharp absorption at $1082 \pm 3 \text{ cm}^{-1}$, the ¹⁰B specimen shows a broad absorption at $1085 \pm 5 \text{ cm}^{-1}$ as well as a shoulder of comparable intensity at $1115 \pm 5 \text{ cm}^{-1}$. The ν_7 absorption is sharp and located at 961 and 985 cm⁻¹, respectively. Obviously the ~1115-cm⁻¹ absorption belongs to ν_2 of the ¹⁰B anion and shifts to ~1085 cm⁻¹ in the ¹¹B compound. The additional feature at ~1085 cm⁻¹ is not sensitive to the boron mass and cannot be one of the fundamentals expected in this region. The combination bands and overtones $\nu_4 + \nu_9$ (1106/1116 cm⁻¹, E), $2\nu_8$ (1120 cm⁻¹, A₁ + A₂ + E), and $\nu_3 + \nu_{10}$ (1063 cm⁻¹, E) are close to 1085

Table XI. Nonzero Symmetry	Force Constants F_{ii} (mdyn/Å)
of CF ₃ BF ₃ , Scaled to 1.000 A	· · · · · · · · · · · · · · · · · · ·

$F_{ij}, ij =$		$F_{ij}, ij =$	
11	3.63	12	0.25
22	6.65	13	0.25
33	5.87	14	-0.25
44	1.90	15	-0.25
55	1.24	24	0.62
66	3.95	35	0.30
77	3.35	68	-0.70
88	1.80	6,10	0.53
99	1.09	79	-0.57
10,10	1.06	7,11	0.43
11,11	0.69	8,10	-0.20
		9,11	-0.17
		10,11	0.06

cm⁻¹ and possess E components which should not interact with v_2 .

Normal-Coordinate Analysis. In order to gain support for the assignment, to obtain force constants for the interpretation of the bonding in the $CF_3BF_3^-$ anion, and to describe the vibrational behavior properly, a normal-coordinate analysis following the FG matrix method has been undertaken. A G matrix was calculated³¹ assuming a staggered C_{3v} structure with averaged bond lengths and bond angles taken from the x-ray data. A starting F matrix following the principle of the quadratic local symmetry force field³² was adopted in the usual way³ by transfer of force constants from HCF_3 ,³³ $BF_4^{-,34}$ and $MeBF_2/Me_2BF$.³⁵ This force field reproduced both experimental frequencies and ^{10/11}B shifts with surprising accuracy. It was refined according to the following criteria: (i) exact fit with fundamental frequencies obtained from solution spectra whenever possible, (ii) precise reproduction of experimental $^{10/11}$ B shifts, (iii) reduction of the F matrix multiplicity according to the principle of meaningful potential energy distribution.36

The nonzero symmetry force constants are given by Table XI. Experimental and calculated vibrational frequencies and 10/11B shifts as well as the calculated potential energy distribution in terms of diagonal force constants are collected in Table VIII. Note that Table VIII gives the potential energy distribution in terms of diagonal force constants and not eigenvectors and, therefore, does not reflect the proper motion of the atoms. Evidently several coordinates contribute to vibrations ν_1 to ν_{11} . This is also implied by the pseudo- D_{3d} character of the vibrational spectrum. Coupling between vibrations perpendicular to the C_3 axis (class e) is less pronounced than for a_1 vibrations. Thus it is not justified to assign the observed fundamentals to individual "CF", "BF", or "BC" vibrations.

Discussion

The vibrational spectroscopic investigations prove a nearly ideal behavior for the CF₃BF₃⁻ anion, namely (i) all fundamentals can be observed either in the IR and/or Raman effect, (ii) except for $2\nu_5$, $\nu_3 + \nu_9$, and $\nu_7 + \nu_9$ no overtones and combination frequencies below 2000 cm⁻¹ could be detected, and (iii) no evidence for anharmonic resonance was obtained. A significant result of this investigation is the unequivocal identification of ν_1 and, as a consequence, that of ν_2 , ν_6 , and ν_7 . It does not appear possible that a combination frequency or overtone could both appear at 1340/1360 cm⁻¹ and exhibit a $^{10/11}$ B shift of 16 cm⁻¹. Further disagreement with ref 7 concerns the quality of the spectra, the assignment and, consequently, the normal-coordinate analysis. We emphasize that in all cases of disagreement the results quoted in the tables are suggested by new experimental results and supported by the comparison with C_2F_6 and by the consistency with the x-ray results.

Table XII. Comparison of Force Constants (mdyn/Å)

Compd	$f_{\rm CF}$	$f_{\mathbf{CF}/\mathbf{CF}'}$	$f_{\mathbf{BF}}$	$f_{{f BF}/{f BF}'}$	$f_{\mathbf{BC}}$
CF ₃ BF ₃ -a	4.85	0.90	4.19	0.84	3.63
CF ^b	7.32	0.64			
HCF ₃ ^c	6.45	0.94			
HCF_{3}^{d}	6.48	0.82			
CF ₃ .e	6.35	0.84			
CF ₃ GeF ₃ ^f	5.98	0.96			
$(CH_3)_3 B^g$					3.64
$(CH_3)_3 B^g$ BF ₄ -h			5.06	0.56	
BF_3^{i}			7.28	0.77	

^a This work. ^b Reference 53. ^c Reference 33a. ^d Reference 33b. ^e Unpublished results, using ¹²C and ¹³C matrix frequencies from D. E. Milligan and M. E. Jacox, J. Chem. Phys., 48, 2265 (1968). ^f H. Bürger and R. Eujen, Spectrochim. Acta, Part A, 31a, 1645 (1975). ^g Reference 35. A BC/BC' interaction force constant of 0.24 mdyn/Å is quoted. ^h Force constants obtained by ref 34c employing IR frequencies quoted in ref 34b. ⁱ J. L. Duncan, J. Mol. Spectrosc., 22, 247 (1967).

In Table XII the inner stretching force constants of CF₃BF₃⁻ are reproduced and compared with those of related molecules. Unexpectedly, f_{CF} and f_{BF} are small, while at the same time $f_{CF/CF'}$ and $f_{BF/BF'}$ appear to be normal or even large. This suggests that the class e force constants F_{66} and F_{77} , which mainly determine ν_6 and ν_7 , could be too small. Since the ~970-cm⁻¹ vibration is undoubtedly the degenerate stretch ν_7 and not a degenerate bending mode and since no e vibration is above 1100 cm⁻¹, adoption of higher values for F_{66} and F_{77} (and hence f_{BC} and f_{BF}), which are also interrelated by the ^{10/11}B shift, appears impossible.

^{10/11}B shift, appears impossible. Despite the availability of ^{10/11}B shifts, B-C stretching force constants are difficult to derive precisely. This is in particular true for the CF₃BF₃⁻ anion in which the central motion has ν (BC) character. Table VIII shows that this motion contributes to several vibrations. Consequently f_{BC} (= F_{11}) is strongly dependent on the off-diagonal elements F_{1i} (i = 2-5), which again are dependent on F_{ii} (i = 2-5). If reasonable upper limits for the interaction force constants $f_{CF/CF'}$ and $f_{BF/BF'}$ are obeyed, the BC stretching force constant F_{11} lies in the range 3.0-3.8 mdyn/Å. This implies that f_{BC} in CF₃BF₃⁻ is equal or slightly (<15%) smaller than in other methylboron compounds.

Some interesting comparisons may be made between the structure of $CF_3BF_3^-$ and that of the isoelectronic hexafluoroethane molecule. First, the fact that the B-F distances in the anion are not significantly different from those in tetrafluoroborate salts is analogous to the similarity of the C-F bond lengths in CF₄, $r_a = 1.317$ Å,³⁷ and in CF₃CF₃, $r_g = 1.326$ Å.³⁸ The uncorrected and corrected C-F bond lengths in the anion, however, are 0.017 (8) and 0.034 (8) Å, respectively, longer compared to that in CF₃CF₃. Second, replacement of a carbon atom in CF_3CF_3 by the relatively electropositive B⁻ would be expected^{39,40} to lead to F-C-F valence angles in the anion which are smaller than those in CF₃CF₃, 109.1°.³⁸ On the average the F-C-F angle is indeed 4.2 (2)° smaller in $K[CF_3BF_3]$. In addition, the similarity between the average F-B-F angles of K[CF₃BF₃] and of KBF₄,²⁵ 109.9 (5) and 109.4 (4)°, respectively, may indicate that the group electronegativity of CF_3 is comparable to the electronegativity of F. These observations based on bond angle arguments are supported by the consistency of the F-C-F and F-B-F bond angles with the C-F and B-F bond lengths, vide supra. Third, the corrected B-C distance in the anion is predicted quite well by the sum of (i) the C–C distance in CF₃CF₃, $r_g = 1.545$ Å,³⁸ and (ii) the difference of 0.089 Å between the corrected B-F distance in the fluoroborate anion, 1.406 Å,²⁶ and the $\overline{C-F}$ distance in CF₄, 1.317 Å.³⁷ For comparison the difference between the tetrahedral covalent radii of B and C atoms is 0.11 Å.²⁰ Fourth, since the C-C distance in CF₃CF₃ is only

0.012 Å longer than that in CH₃CH₃, $r_g = 1.533$ Å,⁴¹ the B–C distances in CH₃BH₃⁻ and in CF₃BF₃⁻ might be expected to be nearly identical. This reasoning is consistent with the average B–C bond lengths observed in other⁴² borate compounds (Table V) and with the lack of evidence for a fluorine substitution effect on the B–C bond length in R_nBF_{3-n} (n = 1-3) compounds.⁴⁶ Similarly, the B–C distance in CH₃BF₃⁻ in analogy to the C–C distances in CH₃CF₃ and CF₃CF₃, $r_o = 1.530^{51}$ and 1.545 Å,³⁸ respectively.

Linear correlation between C-H distances and C-H stretching force constants has been demonstrated convincingly.⁵² However, comparison of Tables V and XII strongly suggests that for C-F, B-C, and B-F bonds such relation of distances (Å) and stretching force constants (mdyn/Å) does not hold. If for example the relation in CH_nF_{4-n} compounds $(n = 0, r_a = 1.317,^{37} f = 7.32;^{53} n = 1, r_a = 1.334,^{22} f = 6.45;^{33} n = 2, r_a = 1.360,^{22} f = 6.10;^{54} n = 3, r_a = 1.391,^{22} f = 5.69^{55})$ would be applied to CF₃BF₃⁻, the observed and corrected C-F distance (1.360 Å) suggests a force constant in the order of 6.3 mdyn/Å, while vice versa the calculated force constant (4.85 mdyn/Å) predicts a C-F bond length greater than 1.40 Å!

Previous investigations suggest that in CF₃ compounds f_{CF} varies considerably although the C–F length is nearly constant. This suggestion is supported by transition metal CF₃ derivatives which have C–F bond lengths close to 1.35 Å^{23,24} while f_{CF} and $f_{CF/CF'}$ have been calculated to be 3.93 and 0.83 mdyn/Å, respectively, for CF₃Co(CO)₄.⁵⁶ Similarly we have found for (CF₃)₂Hg a corrected C–F bond length of 1.349 Å, $f_{CF} = 5.15$ mdyn/Å and $f_{CF/CF'} = 0.82$ mdyn/Å.⁵⁷ With respect to C–F bond length and force constants, the CF₃BF₃⁻ anion clearly compares better with transition metal CF₃ derivatives than with CHF₃. Similarly for four-coordinate boron compounds, B–F bonds show only small distance changes while the force constants vary widely.

Caution is appropriate when correlating B-C force constants and B-C bond lengths due to uncertainties quoted in previous investigations. If data so far available are considered, B-C distances in three-coordinate boron compounds are ≤ 1.60 Å, in borate derivatives 1.62-1.65 Å, while stretching force constants spread around 3.5 mdyn/Å in both cases. More and better structural data and improved force constants are required before conclusions can be drawn.

From the above considerations some conclusions may be drawn for the stability of trifluoromethyl compounds of boron if we assume force constants and bond lengths are related to bond strength. The C-F bonds in $K[CF_3BF_3]$ are weaker than those in CF_4 and CF_3CF_3 (indeed they seem to be weaker than those in a wide variety of CF_3 compounds of the main group elements²²). Predictions from isovalent hybridization theory, VSEPR theory⁴⁰ as well as the simple notion that C-F Coulombic attraction is reduced in an anion are all consistent with this observation. Were the relative weakness of the C-F bonds not offset by stronger B-C and B-F bonding, with respect to that in other borates, a degree of thermodynamic instability for $K[CF_3BF_3]$ would be implied. Although neither spectroscopic nor x-ray data imply relatively strong B-F bonding, the question of B-C bonding cannot be answered convincingly. Of course kinetic factors⁵ are likely to be important to the apparent stability of K[CF₃BF₃]. The kinetic stability arises through the coordinate saturation of the B and C atoms; thus reaction probably is preceded by bond breaking, nucleophilic attack on the central atoms being hindered by the negatively charged F atoms. For CF₃ compounds of threecoordinate boron, the fourth site can receive a F atom from the CF₃ group, thus forming BF₃ and CF₂, as has been observed in CF₃BF₂.⁴ The observation, however, that the reaction

appears to have a significant activation energy (i.e., CF_3BF_2) is stable if "catalysts" are not present⁴) seems to violate this simple view. It has been proposed that $F(p\pi)$ back-bonding might act to block the fourth coordination site in CF_3BF_2 . Another explanation might be that C-F bonding is stronger in CF_3BF_2 than in CF_3BF_3 for the same reason that the $C_{\beta}-C_{\alpha}-C_{\beta}$ angle is greater, ~117°, in triarylboron compounds than it is in B(C₆H₅)₄, ~114° (Table V). Clearly, more information on trifluoromethyl compounds of boron, in particular CF_3BF_2 , is required before this problem can be settled.

Yokozeki and Bauer²² have noted that for $(CF_3)_nA$ and $(CH_3)_n$ A compounds, the C(CF₃)-A distances are longer than the $C(CH_3)$ -A bonds if the electronegativity of atom A is less than that of a carbon atom. The reverse is true if the electronegativity of A is greater than 2.5. Theoretical foundation for this trend has been given by CNDO calculations; as the electronegativity of A decreases, the ionic contribution to $C(CF_3)$ -A bonding is no longer able to offset the loss in $C(CF_3)$ -A covalent bonding relative to that in $(CH_3)_rA$ compounds.⁵⁸ Accordingly for $(CF_3)_4B^-$ and $(CH_3)_4B^-$, the C(CF₃)-B distance is predicted to be ~1.72 Å; i.e., 0.07-0.09 Å longer than the corresponding $C(CH_3)$ -B bond. Such a prediction is inconsistent with the structure of $K[CF_3BF_3]$. Clearly there is a need to examine more CF₃ compounds of the more electropositive elements in order to clarify this problem.

Acknowledgment. Support by the Deutsche Forschungsgemeinschaft and the Ministerium für Wissenschaft und Forschung Nordrhein-Westfalen is gratefully acknowledged. We wish to thank Dr. C. Krüger, Mülheim/Ruhr, for several computer programs as well as the computer drawing.

Registry No. K[CF₃BF₃], 42298-15-7.

Supplementary Material Available: A listing of structure factor amplitudes for K[CF3BF3] (5 pages). Ordering information is given on any current masthead page.

References and Notes

- Vibrational Spectra and Normal-Coordinate Analysis of CF₃ Compounds, 17; for part 16 see ref 2
- R. Demuth, H. Bürger, G. Pawelke, and H. Willner, Spectrochim. Acta, (2)in press.
- Leading references: (a) group 4, H. Bürger, R. Eujen, and R. J. Lagow, Spectrochim. Acta, Part A, **31a**, 777 (1975); H. Bürger and R. Eujen, *ibid.*, **31a**, 1655 (1975); (b) group 5, H. Bürger, R. Eujen, and R. Demuth, *ibid.*, **31a**, 1955 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31a**, 1955 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31a**, 1955 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31a**, 1955 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31a**, 1955 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31a**, 1955 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31b**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 7, 1055 (1975); (c) group 6, H. Bürger and G. Pawelke, *ibid.*, **31c**, 1055 (1975); (c) group 7, 1055 (1975); (c) 7, 1055 (1975); (c) 7, 1055 (1 (3)31a, 1965 (1975); (d) group 7, A. Ruoff and H. Bürger, Spectrochim. Acta, in press.
- (4) T. D. Parsons, J. M. Self, and L. H. Schaad, J. Am. Chem. Soc., 89, 3446 (1967).
- (5) R. D. Chambers, H. C. Clark, and C. J. Willis, Proc. Chem. Soc., London,
- 114 (1960); J. Am. Chem. Soc., 82, 5298 (1960).
 J. Jander and H. Nagel, Justus Liebigs Ann. Chem., 669, 1 (1963).
 J. F. Jackovitz, C. E. Falletta, and J. C. Carter, Appl. Spectrosc., 27, 209 (1973).
- (8) D. H. Rank and E. L. Pace, J. Chem. Phys., 15, 39 (1947); E. L. Pace, . Chem. Phys., 16, 74 (1948); A. Lewis and E. L. Pace, J. Chem. Phys., **58**, 3661 (1973).
- The gas-phase Raman spectrum of C₂F₆ exhibits three sharp, intense, and strongly polarized lines near 1420, 810, and 350 cm⁻¹ (unpublished results). The 1228-cm⁻¹ frequency for ν_1 (a_{12}) adopted by one group¹⁰ and recommended by another¹¹ has never been observed and is only a guess which fits combination bands if anharmonicity is neglected
- R. A. Carney, E. A. Piotrowski, A. G. Meister, J. H. Braun, and F. F. Cleveland, J. Mol. Spectrosc., 7, 209 (1961). T. Shimanouchi, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand., 6, 29 (10)
- (11)1967)
- (12) In addition to local programs for the CDC 7600/7200, the programs were modified versions of Davis's LSCELD for unit cell constants; of Sheldrick's SHEL-X package for absorption correction, direct methods, least-squares, Fourier, and molecular dimensions; of Roberts and Sheldrick's XANADU for geometrical and thermal motion calculation; of Johnson's ORTEP for the drawing of the anion as well as programs written by D. J. B. for data reduction, REDUCE, and intermolecular distances and angles, ABWINK.
- (13)Unless another meaning is clearly specified, a number in parentheses following a numerical value here and throughout the paper is the estimated standard deviation in the last digit.

- (14) D. J. Brauer and C. Krüger, Acta Crystallogr., Sect. B, 29, 1684 (1973).
 (15) (a) J. A. Ibers and W. C. Hamilton, Ed., "International Tables for X-Ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, 1974, Table 2.2B; (b) *ibid.*, Table 2.3.1.
- (16) (a) To test for boron, carbon disorder, fractional C and B atoms were used with occupancies α and $1 - \alpha$, respectively, at the original C atom position and $1 - \alpha$ and α , respectively, at the B atom position. Coincident atoms were constrained to have equal positional and thermal parameters. Five cycles of refinement on all parameters, starting with $\alpha = 0.5$, converged with R = 0.058 and $R_w = 0.0783$. No geometrical or thermal parameters shifted more than 2σ . The disorder model might be accepted with a high degree of confidence since the R factor ratio 0.0790/0.0783 = 1.009 is slightly larger than $R_{1,884,0005} = 1.006.16^{16}$ However, the amount of disorder, $\alpha = 0.91$ (5), is not significant. The difference Fourier densities at the B atom position are -0.13 and -0.16 e Å⁻³ after the ordered and disordered refinements, respectively. In both difference maps the densities at the other atom centers vary from 0.00 to 0.22 e^{-3} , background about 0.1 e Å⁻³. The peak height ratio $\rho(C)/\rho(B)$ on a difference map calculated with the C and B atoms removed agrees well with the ratio observed on an electron density map calculated from the ordered model, 1.09 and 1.13, respectively. The small drop in R_w during the double atom refinement, the insignificant amount of disorder indicated, and examinations of Fourier and difference Fourier maps led us to conclude that no detectable amount of disorder is present. (b) W. C. Hamilton, Acta Crystallogr., 18, 502 (1965)
- (17) A listing of $|F_0|$, F_c in electrons (×10) is included in supplementary material.
- (18)V. Schomaker and K. N. Trueblood, Acta Crystallogr., Sect. B, 24, 63 (1968).
- (19)C. K. Johnson and H. A. Levy, "Thermal-Motion Analysis Using Bragg Diffraction Data", in ref 15a.
- L. Pauling, "The Chemical Bond", Cornell University Press, Ithaca, N.Y., (20)1967, p 152.
- (21) K. Lonsdale, Ed., "International Tables for X-Ray Crystallography", Vol. II, The Kynoch Press, Birmingham, 1968, Table 4.1.1

- (22) A. Yokozeki and S. H. Bauer, *Top. Curr. Chem.*, **53**, 71 (1975).
 (23) D. B. Crump and N. C. Payne, *Inorg. Chem.*, **12**, 1663 (1973).
 (24) M. R. Churchill and T. A. O'Brien, *J. Chem. Soc. A*, 161 (1970).
 (25) G. Burton, *Acta Crystallogr., Sect. B*, **25**, 2161 (1969).
 (26) A. P. Caron and I. L. Baola, *Acta Crystallogr. Sect. B*, **27**, 1102 (1971).

- (26) A. P. Caron and J. L. Ragle, Acta Crystallogr., Sect. B, 27, 1102 (1971).
 (27) W. Gordy, H. Ring, and A. B. Burg, Phys. Rev., 78, 512 (1950).
- W. J. Lafferty and J. J. Ritter, J. Mol. Spectrosc., 38, 181 (1971). (28)(29) D. Groves, W. Rhine, and G. D. Stucky, J. Am. Chem. Soc., 93, 1553
- (30) D. F. Eggers, R. C. Lord, and C. W. Wickstrom, J. Mol. Spectrosc., 59, 63 (1976).
- P. Pulay, Gy. Borossay, and F. Török, J. Mol. Struct., 2, 336 (1968); (31) P. Pulay and W. Sawodny, J. Mol. Spectrosc., 26, 150 (1968).
 (32) T. Shimanouchi in "Physical Chemistry, An Advanced Treatise", H.
- Eyring, D. Henderson, and W. Jost, Ed., New York, N.Y., 1970, p 233.
- (33) (a) A. Ruoff, H. Bürger, and S. Biedermann, Spectrochim. Acta, Part A, 27a, 1377 (1971); (b) R. W. Kirk and P. M. Wilt, J. Mol. Spectrosc., 58, 102 (1975).
- (a) J. Goubeau and W. Bues, Z. Anorg. Allg. Chem., 268, 221 (1952);
 (b) H. Bonadeo and E. Silberman, J. Mol. Spectrosc., 32, 214 (1969); (34)(c) M. Fouassier and M. T. Forel, ibid., 39, 525 (1971).
- (35) H. Siebert, Z. Anorg. Allg. Chem., 268, 13 (1952)
- (36) H. J. Becher, Fortschr. Chem. Forsch., 10, 156 (1968)
- (37) C. W. W. Hoffman and R. L. Livingston, J. Chem. Phys., 21, 565 (1953).
- (38) K. L. Gallaher, A. Yokozeki, and S. H. Bauer, J. Phys. Chem., 78, 2389
- 1974) (39) H. A. Bent, Chem. Rev., 61, 275 (1961); A. D. Walsh, Trans. Faraday
- Soc., 43, 60 (1947). (40) R. J. Gillespie, Angew. Chem., 79, 885 (1967); Angew. Chem., Int. Ed. Engl., 6, 819 (1967).
- (41) K. Kuchitsu, J. Chem. Phys., 49, 4456 (1968).
- (42) The B-C bond lengths in triarylboron compounds $(C_6H_5)_3B^{43}$ and $[C_6H_2(CH_3)_3]_3B^{44}$ are indistinguishable from those in $(CH_3)_3B_3^{45}$ hence $C(sp^2)$ -B and $C(sp^3)$ -B distances, in $(C_6H_5)_4B^-$ and $(CH_3)_4B^-$, respectively, might also be comparable.
- (43) F. Zettler, H. D. Hausen, and H. Hess, J. Organomet. Chem., 72, 157 (1974).
- (44) J. F. Blount, P. Finocchiaro, D. Gust, and K. Mislow, J. Am. Chem. Soc., 95, 7019 (1973).
- (45) L. S. Bartell and B. L. Carroll, J. Chem. Phys., 42, 3076 (1965).
 (46) While the B-C distance in C₂H₃BF₂⁴⁷ is 0.026 Å shorter than that in (C₂H₃)₃B⁴⁸ (Table V), inspection of C(CH₃)-B distances in CH₃BF₂⁴⁹ (CH₃)₂BF,⁴⁹ and (CH₃)₃B⁴⁵ (Table V) does not reveal any systematic trend. Also geometry-optimized ab initio MO studies⁵⁰ on (CH₃)₃BF_{3-n} (m⁻¹, 0, 2) (n = 0-3) indicate that the C(CH₃)-B distance is essentially unaffected by fluorine substitution.
- (47) J. R. Durig, L. W. Hall, R. O. Carter, C. J. Wurrey, V. F. Kalasinky, and J. D. Odom, J. Phys. Chem., 80, 1188 (1976).
 (48) A. Foord, B. Beagley, W. Reader, and J. A. Steer, J. Mol. Struct., 24,
- 131 (1975).
- (49) S. H. Bauer and J. M. Hastings, J. Am. Chem. Soc., 64, 2686 (1942).
- (50) N. F. Fitzpatrick and N. J. Mathews, J. Organomet. Chem., 94, 1 (1975).
- (51) W. F. Edgell, G. B. Miller, and J. W. Amy, J. Am. Chem. Soc., 79, 2391 (1957).

- (52) D. C. McKean, J. L. Duncan, and L. Batt, Spectrochim. Acta, Part A, 29a, 1037 (1973).
- (53) A. Ruoff, Spectrochim. Acta, Part A, 23a, 2421 (1967).
 (54) I. Suzuki and T. Shimanouchi, J. Mol. Spectrosc., 46, 130 (1973). They suggest that the adopted set (II) is the most likely one.
- (55) J. L. Duncan, D. C. McKean, and G. K. Speirs, Mol. Phys., 24, 553 (1972).
- (56) G. C. van den Berg and A. Oskam, J. Organomet. Chem., 91, 1 (1975).
- (57) D. J. Brauer, H. Bürger, and R. Eujen, unpublished results.
- (58) H. Oberhammer, J. Mol. Struct., 28, 349 (1975).

Contribution from the Departments of Chemistry, University of Alabama, University, Alabama 35486, and Tulane University New Orleans, Louisiana 70118

Intramolecular Hydrogen-Bonding Implications on the Lability of the Molybdenum-Piperidine Bond. Molecular Structure of *cis*-Mo(CO)₄[P(OCH₃)₃]NHC₅H₁₀

J. L. ATWOOD*1 and D. J. DARENSBOURG*2

Received January 13, 1977

The preparation of cis-Mo(CO)₄[P(OCH₃)₃]NHC₅H₁₀ by photolysis of Mo(CO)₅P(OCH₃)₃ in the presence of piperidine is described. The structure of this complex has been determined by single-crystal x-ray diffraction methods. The compound crystallizes in the orthorhombic space group $P_{2_12_12_1}$ with unit cell parameters a = 8.162 (4) Å, b = 11.708 (4) Å, c =18.713 (6) Å, and $\rho_{calcd} = 1.55$ g cm⁻³ for Z = 4. Full-matrix least-squares refinement led to a final R value of 2.8% based on 1422 observed reflections. The most significant structural feature of the molecule is the existence of a weak, but chemically significant, intramolecular N-H···O hydrogen bond. This interaction has been shown to greatly affect the lability of the molybdenum-piperidine bond.

Introduction

Mechanistic studies of substitution reactions of substituted group 6B metal carbonyl derivatives have played a particularly important role in the elucidation of the details of reactions in general involving the replacement of neutral ligands from metal centers of low oxidation states.³⁻⁷ In addition, information obtained from reactivity investigations of these octahedral complexes has been very revealing with respect to the geometry of transition states and/or intermediates involved in these ligand displacement processes.^{8,9}

We have previously noted in metal carbonyl-amine complexes and related derivatives, which contain amines with the N-H grouping, that intermolecular hydrogen bonding occurs between the bound amine and donor bases (e.g., THF or $R_3P=0$).⁶ This weak interaction was shown to result in a dissociative activation of the amine substitution process with Lewis bases. The rate enhancement for the amine displacement in the presence of donor bases was attributed to steric repulsions in the outer-sphere hydrogen-bonded intermediate as well to an increase in the effective concentration or activity of the incoming ligand at the reaction center.⁷ We have therefore undertaken an investigation where the opportunity for intramolecular hydrogen bonding exists to see if there was stabilization of the metal-amine complex through hydrogen bonding. In this communication we wish to report the molecular structure of cis-Mo(CO)₄[P(OCH₃)₃]NHC₅H₁₀ in addition to spectral and amine lability studies on this species.

Experimental Section

Preparation of *cis*-**Mo**(**CO**)₄[**P**(**OCH**₃)₃]**NHC**₅**H**₁₀. This complex was prepared in a manner similar to that previously reported.¹⁰ (CH₃O)₃PMo(CO)₅¹¹ was irradiated in tetrahydrofuran with excess HNC₅H₁₀ employing a 100-W Hanovia lamp for 2 h. The solvent was removed under vacuum leaving behind a yellow oil. Upon addition of heptane yellow crystals formed which were isolated by filtration and washed several times with heptane. The complex was purified by recrystallization from chloroform/methanol. The yellow crystalline product melted with decomposition at 103–105 °C. Anal. Caled for Mo(CO)₄[P(OCH₃)₃]NHC₅H₁₀: C, 34.53; H, 4.83; N, 3.36. Found: C, 34.48; H, 4.79; N, 3.39. Table I. Crystal Data

Compd Mol wt Linear abs coeff μ , cm ⁻¹ Calcd density, g cm ⁻³ Max crystal dimensions, mm Space group Molecules/unit cell	$\begin{array}{l} Mo(CO)_4 \left[P(OCH_3)_3 \right] NHC_5 H_{10} \\ 418.2 \\ 8.42 \\ 1.55 \\ 0.18 \times 0.38 \times 0.50 \\ Orthorhombic, P2_1 2_1 2_1 \\ 4 \end{array}$
Cell constants ^a a, Å b, Å c, Å Cell vol, Å ³	8.162 (4) 11.708 (4) 18.713 (6) 1788.2

^a Mo K α radiation, λ 0.710 69 Å; ambient temperature of 23 ± 1 °C.

The infrared spectrum in the ν (CO) region showed bands in hexane at 2024 (A₁), 1928 (A₁), 1906 (B₁), and 1877 cm⁻¹ (B₂). The ν (NH) vibration was observed at 3267 cm⁻¹ in C₂Cl₄.

X-Ray Data Collection and Structure Determination for Mo-(CO)₄[P(OCH₃)₃]NHC₅H₁₀. Single crystals of the compound were sealed in thin-walled glass capillaries. Final lattice parameters as determined from a least-squares refinement of the angular settings for 12 reflections ($\theta > 19^\circ$) accurately centered on the diffractometer are given in Table I. The space group was uniquely determined to be $P2_12_12_1$ [D_2^4 , No. 19] from the systematic absences in h00 for h = 2n + 1, 0k0 for k = 2n + 1, and 00l for l = 2n + 1.

Data were taken on an Enraf-Nonius CAD-4 diffractometer with graphite crystal monochromated molybdenum radiation. The diffracted intensities were collected by the ω -2 θ scan technique with a takeoff angle of 3.0°. The scan rate was variable and was determined by a fast (20° min⁻¹) prescan. Calculated speeds based on the net intensity gathered in the prescan ranged from 7 to 0.3° min⁻¹. Moving-crystal, moving-counter backgrounds were collected for 25% of the total scan width at each end of the scan range. For each intensity the scan width was determined by the equation

scan range = $A + B \tan \theta$

where $A = 0.90^{\circ}$ and $B = 0.20^{\circ}$. Aperture settings were determined in a like manner with A = 4.00 mm and B = 2.11 mm. Other diffractometer parameters and the method of estimation of the standard deviations have been described previously.¹² As a check on

AIC700190